
ME-429 Problem set 6 2025-04-02

Problem 1. Computing shortest paths

Let G be an undirected graph with N nodes {s1, ... , sN}. Suppose G is complete, i.e., every pair of nodes is
connected by an edge. For i ̸= j, let aij ∈ R>0 be the cost of the edge connecting si and sj . For i = j, we
set aij = 0. By interpreting the nodes as states and the edges as actions, we may directly apply the dynamic
programming method seen in lecture to compute shortest paths in G.

s1

s5

s4

s3

s2

2

3

1

0.5

6

2

5

7

5

5

Figure 1: The graph G.

a) For the graph in Figure 1, use dynamic programming to compute the cost of the shortest path from each si ,
i ∈ {1, ... , 4}, to s5.
Hint: For each k ∈ {1, ... , N}, and node si , let Vk(si) be the optimal cost, i.e. shortest path, to sN when
starting from si with N − k steps remaining. Clearly, VN(sN) = 0 and VN(sj) = ∞ for all j ̸= N. Based on this,
compute VN−1(si) for all si , then VN−2(si), and so on, until V1(si).

Solution: Observe that for all k ∈ {1, ... , N − 1}, and states si ,

Vk(si) = min
j∈{1,...,N}

{
aij +

(
optimal cost to go from sj to sN in N − k − 1 steps

)}
= min

j∈{1,...,N}
{aij + Vk+1(sj)} .

As noted above, V5(s5) = 0 and V5(sj) = ∞ for all j ̸= 5. Next, we compute

V4(s1) = min
j∈{1,...,5}

{
a1j + V5(sj)

}
= 2 + V5(s5) = 2,

V4(s2) = min
j∈{1,...,5}

{
a2j + V5(sj)

}
= 7 + V5(s5) = 7,

V4(s3) = min
j∈{1,...,5}

{
a3j + V5(sj)

}
= 5 + V5(s5) = 5,

V4(s4) = min
j∈{1,...,5}

{
a4j + V5(sj)

}
= 3 + V5(s5) = 3,

V4(s5) = min
j∈{1,...,5}

{
a4j + V5(sj)

}
= 0 + V5(s5) = 0.

1

ME-429 Problem set 6 2025-04-02

Based on this, the next step gives

V3(s1) = min
j∈{1,...,5}

{
a1j + V4(sj)

}
= 2 + V4(s5) = 2,

V3(s2) = min
j∈{1,...,5}

{
a2j + V4(sj)

}
= 0.5 + V4(s3) = 5.5,

V3(s3) = min
j∈{1,...,5}

{
a3j + V4(sj)

}
= 1 + V4(s4) = 4,

V3(s4) = min
j∈{1,...,5}

{
a4j + V4(sj)

}
= 3 + V4(s5) = 3,

V3(s5) = min
j∈{1,...,5}

{
a4j + V5(sj)

}
= 0 + V4(s5) = 0.

Iterating again, we get

V2(s1) = min
j∈{1,...,5}

{
a1j + V3(sj)

}
= 2 + V3(s5) = 2,

V2(s2) = min
j∈{1,...,5}

{
a2j + V3(sj)

}
= .5 + V3(s3) = 4.5,

V2(s3) = min
j∈{1,...,5}

{
a3j + V3(sj)

}
= 1 + V3(s4) = 4,

V2(s4) = min
j∈{1,...,5}

{
a4j + V3(sj)

}
= 3 + V3(s5) = 3,

V2(s5) = min
j∈{1,...,5}

{
a4j + V3(sj)

}
= 0 + V3(s5) = 3.

And, finally,

V1(s1) = min
j∈{1,...,5}

{
a1j + V2(sj)

}
= 2 + V2(s5) = 2,

V1(s2) = min
j∈{1,...,5}

{
a2j + V2(sj)

}
= .5 + V2(s3) = 4.5,

V1(s3) = min
j∈{1,...,5}

{
a3j + V2(sj)

}
= 1 + V2(s4) = 4,

V1(s4) = min
j∈{1,...,5}

{
a4j + V2(sj)

}
= 3 + V2(s5) = 3,

V1(s5) = min
j∈{1,...,5}

{
a4j + V2(sj)

}
= 0 + V2(s5) = 0.

Since edge weights are positive, a path with more than 4 steps cannot be optimal, as it would visit some
node twice (meaning we can remove a cycle and make it shorter). Therefore the shortest path length from
each node si to sN is given by V1(si) as computed above.

b) Use the computed values to reconstruct the shortest paths (i.e. the sequence of nodes that gives optimal
cost) from each si , i ∈ {1, ... , 4}, to s5.
Solution: As an example, we determine the shortest path from s2 to s5. We know V1(s2) = 4.5. To find the
next vertex along a path that has total cost 4.5, we look for i ∈ {1, ... , 5} such that a2i +V2(si) = V1(s2). This is
satisfied by i = 2, meaning we first stay at s2. Next, we again find i ∈ {1, ... , 5} such that a2i +V3(si) = V2(s2),
which is satisfied by i = 3. Then, we look for i ∈ {1, ... , 5} such that a3i + V4(si) = V3(s3), such as i = 4.
Finally, a4i + V5(si) = V4(s4) is satisfied by i = 5. We can check that indeed, the path s2 → s3 → s4 → s5
has the optimal cost of 4.5.

c) A naive way to compute shortest paths is to enumerate and compare all paths with at most N − 1 steps
from a given node si , i ∈ {1, ... , N − 1}, to sN . How many such paths1 are there for each si in a complete
graph with N vertices? How does the number of computations compare (asymptotically) to the dynamics
programming method above?
Solution: We know that the first node in the path is si , and the last is sN . This leaves N − 2 intermediate
nodes, for each of which there are N possible choices. Hence we get NN−2 paths. Note that as the graph
is complete any such sequence will be a valid path.

1To simplify counting, you may count e.g. s1s1s1s5s5 and s1s5s5s5s5 as distinct paths.

2

ME-429 Problem set 6 2025-04-02

For the dynamics programming method, we had N−1 rounds of updates. In each round, we had to compute
N variables Vk(si), for i ∈ {1, ... , N}. Each such computation involved taking a minimum over N options.
Therefore, asymptotically, the number of computations is on the order of N3.
This means, as N increases, the naive method quickly becomes too expensive, while the dynamic program-
ming approach scales significantly better.

Problem 2. Escape game

START

SAFE!

Figure 2: The escape game.

Player 1 (Alice) is trying to escape, going from the start node to the safe zone without being intercepted by
Player 2 (Eve) who is trying to stop her. We model this as a dynamic game with stages k = 1, ... , K and states
S = {sU , sM , sD, sE}. States sU ,sM ,sD represent Alice’s current position (up, middle, or down), and state sE is
entered (and never left) once Eve has caught her.
In Figure 2, each row corresponds to a stage of the game. At each stage, Alice can decide to continue on the
same row, or instead move diagonally one row up or one row down. Eve is aware of the current state, i.e. Alice’s
position, and she is allowed to block one of the three rows in the next stage, taking her decision simultaneously
with Alice. If she selects the row corresponding to Alice’s next move, the game enters state sE which will result
in cost 1 for Alice at the final stage. Otherwise, if Alice survives, i.e. the game is not in state sE at the final
stage, Alice gets cost −1. Eve’s costs are the costs of Alice multiplied by −1.
The actions available to Alice depend on the current state s, namely,

Us =


{U, M, D} , if s ∈ {sM , sE} ;
{U, M} , if s = sU ;
{M, D} , if s = sD.

For Eve, the action set is state-independent and given by V = {U, M, D}.

a) Based on the game description, define its evolution map f (s, u, v) for each s and u ∈ Us, v ∈ V.
Solution: The evolution map should be defined as follows

f (s, u, v) =


sU , if s ̸= sE and u = U and v ̸= U;
sM , if s ̸= sE and u = M and v ̸= M;
sD, if s ̸= sE and u = D and v ̸= D;
sE , if s = sE or u = v.

b) Additionally, we define a stage cost function gk(s, u, v) representing the cost for Alice, by setting, for any
u ∈ Us, v ∈ V,

gk(s, u, v) =


1, if k = K and s = sE ;
−1, if k = K and s ̸= sE ;
0, otherwise.

3

ME-429 Problem set 6 2025-04-02

Determine VK (s) for all s ∈ S.
Solution: Following from the definition of gk , we have

VK (s) =
{

1, if s = sE ;
−1, else.

c) Observe that for k ∈ {1, ... , K − 1} and s ∈ S, we have Vk(s) = minu∈∆(Us) maxv∈∆(V) Vk+1(f (s, u, v)). Using
dynamic programming, for all s ∈ S, determine the values of VK−1(s), and then VK−2(s).
Hint: For each s ∈ S, observe that any u ∈ Us, v ∈ V uniquely determine the next state through the evolution
map. Hence, given s, you can write down the matrix representation of the respective normal-form game and
determine the value of its Nash equilibrium, i.e., a saddle point of minu∈∆(Us) maxv∈∆(V) Vk+1(f (s, u, v)).
Solution: We determine VK−1(s) for each state s:

• For s = sM : We represent VK (f (s, u, v)) as a matrix in which rows correspond to the min-player and
columns to the max-player.

U M D
U 1 −1 −1
M −1 1 −1
D −1 −1 1

The Nash equilibrium of this matrix game is u⋆
K−1(sM) = v⋆

K−1(sM) = [1
3

1
3

1
3] and therefore VK−1(sM) = − 1

3 .
• For s = sU : Similarly, We represent VK (f (s, u, v)) as the matrix

U M D
U 1 −1 −1
M −1 1 −1

The Nash equilibrium of this matrix game is u⋆
K−1(sU) = [1

2
1
2], v⋆

K−1(sU) = [1
2

1
2 0], and therefore we have

VK−1(sU) = 0.
• For s = sD, the computations are symmetric to the case s = sU and one obtains VK−1(sU) = 0.
• For s = sE , we get VK−1(sE) = VK (sE) = 1.

Next, we determine VK−2(s) for each state s based on the above computed results for VK−1

• For s = sM : We represent VK−1(f (s, u, v)) as a matrix in which rows correspond to the min-player and
columns to the max-player.

U M D
U 1 0 0
M −1/3 1 −1/3
D 0 0 1

The Nash equilibrium of this matrix game is u⋆
K−2(sM) = [4

11
3
11

4
11], v⋆

K−2(sM) = [3
11

5
11

3
11] and therefore

VK−2(sM) = 3
11 .

• For s = sU : Similarly, We represent VK−1(f (s, u, v)) as the matrix

U M D
U 1 0 0
M −1/3 1 −1/3

One can find the following Nash equilibrium: u⋆
K−2(sU) = [1 0], v⋆

K−2(sU) = [0 1 0], and therefore we have
VK−2(sU) = 0.

• For s = sD, the computations are again symmetric to the case s = sU and one obtains VK−2(sU) = 0.

4

ME-429 Problem set 6 2025-04-02

• For s = sE , we get VK−2(sE) = VK−1(sE) = 1.

d) As K → ∞, if the backward iteration converges, we would have V (s) = minu∈∆(Us) maxv∈∆(V) V (f (s, u, v)),
and we would obtain stationary policies u⋆(s), v⋆(s). Give a set of equations V (s) would have to satisfy for
such stationary policies.
Solution: The following is a necessary condition for u⋆(s), v⋆(s) to be optimal stationary policies: For all
s ∈ S,

V (s) = V (f (s, u⋆(s), v⋆(s))).

5

