ME-429 Problem set 6 2025-04-02

Problem 1. Computing shortest paths

Let G be an undirected graph with N nodes {s1,...,sy}. Suppose G is complete, i.e., every pair of nodes is
connected by an edge. For i # j, let a; € R, be the cost of the edge connecting s; and s;. Fori = j, we
set a; = 0. By interpreting the nodes as states and the edges as actions, we may directly apply the dynamic
programming method seen in lecture to compute shortest paths in G.

Figure 1: The graph G.

a) For the graph in Figure 1, use dynamic programming to compute the cost of the shortest path from each s;,
ie{1,..,4},10ss.

Hint: For each k € {1,...,N}, and node s;, let Vi(s;) be the optimal cost, i.e. shortest path, to sy when
starting from s; with N — k steps remaining. Clearly, Vn(sny) = 0 and V(s;) = oo for all j # N. Based on this,
compute Vy_+(s;) for all s;, then Vy_o(s;), and so on, until V,(s;).

Solution: Observe that for all k € {1,...,N — 1}, and states s;,
Vi(si) = {rPinN} {aj + (optimal cost to go from s; to sy in N — k — 1 steps) }
jeftos
= min }{a,,- + Vii1(s)} .

je{1,.N

As noted above, V5(ss) = 0 and Vs(s;) = oo for all j # 5. Next, we compute

.....

V4(32) = min5} {azj + V5(S/‘)} =7+ V5(S5) =7,

je{1,..,
V4(s3) = min {agz + Vs(s;)} =5+ Vs(s5) = 5,
4(S3) je{1,|...,5}{ 3 + Vs(s))} =5+ Vs(ss)
Va(sa) =je{m1,i..r.1,5} {ay + Vs(s))} = 3+ Vs(ss) = 3,

V4(S5) =jei{?,i.r.1,5} {a4j + V5(S/‘)} =0+ V5(S5) =0.

ME-429 Problem set 6 2025-04-02

Based on this, the next step gives
V3(s1) =j€{f?‘i__f_1’5} {aij + Va(s))} =2+ Vu(ss) = 2,

V3(Sg) =j€P1'1‘i"r.'l’5} {agj + V4(Sj)} =05+ V4(33) =5.5,

Va(s3) =j€{f?‘i__f_1’5} {ag + Va(s))} =1+ Va(sq) = 4,

V3(s4) =j€{f?‘i__r_1’5} {aq + Va(s))} = 3+ Vu(ss) = 3,

V3(ss) =j€{f?‘i__r_1’5} {aq + Vs(s)} = 0+ Vu(ss) = 0.

Iterating again, we get

.....

And, finally,

.....

NS
=
(%)
N
kol
]
m
=3
=)
2]
Z
—~
\M}
S
+
o~
—
N
—
I}
w
+
o~
—
(75}
[$)]
v
]
w

je{t,...,

Since edge weights are positive, a path with more than 4 steps cannot be optimal, as it would visit some
node twice (meaning we can remove a cycle and make it shorter). Therefore the shortest path length from
each node s; to sy is given by V;(s;) as computed above.

Use the computed values to reconstruct the shortest paths (i.e. the sequence of nodes that gives optimal
cost) from each s;, i € {1, ...,4}, to ss.

Solution: As an example, we determine the shortest path from s, to ss. We know V;(s,) = 4.5. To find the
next vertex along a path that has total cost 4.5, we look fori € {1, ...,5} such that az;+ Va(s;) = Vi(s2). Thisis
satisfied by / = 2, meaning we first stay at s,. Next, we againfindi € {1, ...,5} such that ay; + V3(s;) = Va(S2),
which is satisfied by i = 3. Then, we look for i € {1,...,5} such that as; + V4(s;) = V3(s3), such as i = 4.
Finally, a4 + Vs(s;) = V4(s4) is satisfied by i = 5. We can check that indeed, the path s, — s3 — 54 — S5
has the optimal cost of 4.5.

A naive way to compute shortest paths is to enumerate and compare all paths with at most N — 1 steps
from a given node s;, i € {1,...,N — 1}, to sy. How many such paths' are there for each s; in a complete
graph with N vertices? How does the number of computations compare (asymptotically) to the dynamics
programming method above?

Solution: We know that the first node in the path is s;, and the last is sy. This leaves N — 2 intermediate
nodes, for each of which there are N possible choices. Hence we get NV—2 paths. Note that as the graph
is complete any such sequence will be a valid path.

To simplify counting, you may count e.g. 151515555 and $18555S5Ss as distinct paths.

ME-429 Problem set 6 2025-04-02

For the dynamics programming method, we had N — 1 rounds of updates. In each round, we had to compute
N variables Vi(s;), fori € {1,...,N}. Each such computation involved taking a minimum over N options.
Therefore, asymptotically, the number of computations is on the order of N3,

This means, as N increases, the naive method quickly becomes too expensive, while the dynamic program-
ming approach scales significantly better.

Problem 2. Escape game

% ®
SRSYe
® O O

Figure 2: The escape game.

START

Player 1 (Alice) is trying to escape, going from the start node to the safe zone without being intercepted by
Player 2 (Eve) who is trying to stop her. We model this as a dynamic game with stages k = 1, ..., K and states
S = {suy,Sm,Sp,Se}. States sy,su,5p represent Alice’s current position (up, middle, or down), and state s¢ is
entered (and never left) once Eve has caught her.

In Figure 2, each row corresponds to a stage of the game. At each stage, Alice can decide to continue on the
same row, or instead move diagonally one row up or one row down. Eve is aware of the current state, i.e. Alice’s
position, and she is allowed to block one of the three rows in the next stage, taking her decision simultaneously
with Alice. If she selects the row corresponding to Alice’s next move, the game enters state sg which will result
in cost 1 for Alice at the final stage. Otherwise, if Alice survives, i.e. the game is not in state sg at the final
stage, Alice gets cost —1. Eve’s costs are the costs of Alice multiplied by —1.

The actions available to Alice depend on the current state s, namely,
{U,M,D}, ifse{sy,se};
Us =< {U,M}, if s = sy;
{M,D}, if s =sp.

For Eve, the action set is state-independent and given by V = {U, M, D}.

a) Based on the game description, define its evolution map f(s, u,v) foreach sand u € Us, v € V.
Solution: The evolution map should be defined as follows

Sy, ifs#sgandu=Uandv #U,;

Sy, ifs#sgandu=Mandv #M,;

sp, ifs#sgandu=Dandv #D;

Sg, Iifs=sgoru=v.

f(s,u,v) =

b) Additionally, we define a stage cost function gk (s, u, v) representing the cost for Alice, by setting, for any
uels,vev,
1, if k =K and s = sg;
gk(s,u,v) =< —1, ifk=Kands #sg;
0, otherwise.

ME-429 Problem set 6 2025-04-02

Determine Vi (s) foralls € S.
Solution: Following from the definition of g,, we have

Observe that for k € {1,...,K — 1} and s € S, we have Vi(s) = min,caw,) Maxycaw) Vi1 (f(s, u, v)). Using
dynamic programming, for all s € S, determine the values of Vi_+(s), and then V_»(s).

Hint: Foreach s € S, observe thatany u € Us, v € V uniquely determine the next state through the evolution
map. Hence, given s, you can write down the matrix representation of the respective normal-form game and
determine the value of its Nash equilibrium, i.e., a saddle point of min,ca) Maxyeaw) Vi1 (f(s, u, v)).

Solution: We determine Vi _1(s) for each state s:

» For s = sy: We represent Vk(f(s,u,v)) as a matrix in which rows correspond to the min-player and
columns to the max-player.

U M D
T 1
-1 1 -
1 -1 1

u
M
D

The Nash equilibrium of this matrix game is uj_(sm) = Vii_,(sm) = [3 3] and therefore Vi_1(sy) = —
» For s = sy: Similarly, We represent Vk(f(s, u, v)) as the matrix

1
3-

U M D
U1 -1 -

M|-1 1 -
The Nash equilibrium of this matrix game is uy_,(sy) = [3 3], Vi_;(su) = [+ 3 0], and therefore we have
Vk_1(su) = 0.
» For s = sp, the computations are symmetric to the case s = sy and one obtains Vk_1(sy) = 0.
» For s =sg, we get Vk_1(se) = Vk(se) = 1.
Next, we determine V_»(s) for each state s based on the above computed results for Vi _4

» For s = sy;: We represent Vi _(f(s,u,v)) as a matrix in which rows correspond to the min-player and
columns to the max-player.

| U M D
Ul 1 0 o0
M|-1/3 1 -1/3
D| 0 0 1

The Nash equilibrium of this matrix game is ux_,(sy) = [& = £, vi_o(sm) = [= =] and therefore
Vik_a(sm) = 3.
» For s = sy: Similarly, We represent Vi _1(f(s, u, v)) as the matrix
) M D

U 1 0 0
M|-1/3 1 -1/3

One can find the following Nash equilibrium: ug_,(sy) = [1 0], vi_,(sy) = [0 1 0], and therefore we have
Vk—2(su) = 0.

» For s = sp, the computations are again symmetric to the case s = sy and one obtains Vi _»(sy) = 0.

ME-429 Problem set 6 2025-04-02

* Fors =sg, we get Vx_o(se) = Vk_1(sg) = 1.

As K — oo, if the backward iteration converges, we would have V(s) = min,cae,) Maxveaw) V(f(s, u, v)),
and we would obtain stationary policies u*(s), v*(s). Give a set of equations V(s) would have to satisfy for
such stationary policies.

Solution: The following is a necessary condition for u*(s), v*(s) to be optimal stationary policies: For all
ses,

V(s) = V(f(s,u*(s), v*(s))).

